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This paper presents a few novel results, and collects together what is known and conjectured 
about the branching graph of a polyhex. 

1. I n t r o d u c t i o n  

The branching graph (BG) of  a graph (G) is the subgraph that contains the 
branching vertices (i.e. those of  degree > 2) and the edges that connect pairs of  such 
vertices. In this paper we offer a few novel results, and collect together what  is 
known and conjectured about the properties of one particular class, namely the 
branching graph of polyhexes. Benzenoids (polyhexes that possess Kekul6 struc- 
tures) are well known and constitute an important  and interesting class of  hydro- 
carbon structure. 

The concept of the branching graph was introduced [1 ] as a practical recognition 
tool to help in diagnosing whether a graph does or does not  have a Hamil tonian 
path, i.e. a path that visits every vertex just once. This knowledge has chemical rele- 
vance in the fields of structural information transmission (for a structure that  
is path-Hamil tonian is often easier to encode from a keyboard than one that  is 
not  [2]), and of  predicting the magnetic properties of  molecules by use of  the con- 
cept of spanning trees, for the methods available for calculating n-electron ring 
currents in a conjugated system depend on whether or not the system is traceable 
(i.e. has a Hamiltonian path) [3-12]. It has also been found [13] that branching 
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graphs yield some insight into why there are so few Clar sextet 2-factorable poly- 
hexes #1[15] among all those that  theoretically are possible. 

Al though it is a simple device, the subject of branching graphs is quite compli- 
cated, in the sense that  their application involves both graph-theoretical and geo- 
metric features #2 and we have undertaken this study in order to try to understand 
and characterise such objects as fully as possible. 

2. Def in i t ions  

By a polyhex we mean any structure comprising an assembly of hexagons in 
which any two hexagons are either disjoint or have a common edge, al though in 
practice all results reported up to now concern polyhexes that can be embedded in a 
hexagon lattice. We use the term without qualification to refer to the molecular 
graph of  a benzenoid hydrocarbon.  An exact and universally accepted convention 
has not  yet emerged, and other terms in use include "polyhex graph",  "benzenoid 
graph" and "benzenoid system". Benzenoids are often treated as a sub class of 
" l - factorable  polyhexes" (i.e. those that have Kekul6 structures). See references 
such as [19-21] for a fuller discussion of the subject. 

A perfect matching of a graph G is a set of independent (i.e. mutually non- 
incident) edges of  G which cover all the vertices of G. Obviously G may possess a 
perfect matching only if it has an even number of vertices. A k-defect matching #3 is 
a set of  independent  edges that  cover all but k vertices of  the respective graph. A 
perfect matching is therefore a zero-defect matching. By default, k will always be 
taken to have the min imum possible value. 

Matchings,  both perfect and defect, have been extensively studied in the mathe- 
matical literature [23,24] and have well known applications in chemistry [19,25]. 

POLYHEX BRANCH~G GRAPHS THAT ARE OF GENERAL TYPE 

(0) A complete characterisation of  the branching graph of  a general polyhex is 
not  known and, bearing in mind our introductory remarks above, and our findings 
with regard to catacondensed polyhexes (points 5-9 below), any such characterisa- 
tion will probably prove to be rather complicated. 

(1) There is a one-to-one correspondence between the 2-factors of  a polyhex 

#1 These are also referred to as"total resonant sextet benzenoids"; see, for example, ref. [14]. 
#2 It should be noted that the branching graph, as defined~ is indeed a graph, but that often, as 

when it is embedded in a hexagon lattice, it is observed in a particular geometric form (cf. "dual- 
ist", "skeleton" or "characteristic graph" [I 6-18]). 

#3 In an earlier paper [22] the term "k-branch factor" was used - in order to emphasise the analogy 
between these and principal resonance structures in chemistry. 
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and the 1-factors (= perfect matchings) of its branching graph. A proof of this 
result has been given [22]. 

(2) A pericondensed polyhex has a branching graph with at least one vertex of 
degree three. 

Proof 

Any pericondensed polyhex contains at least one phenalene fragment. Phena- 
lene has the (branched) 3-star graph as its BG. This latter graph is contained as a 
subgraph in any BG ofa pericondensed polyhex. 

Whence, if a BG contains no vertex of degree three, then it corresponds to a cata- 
condensed polyhex. If, however, it does contain vertices of degree three, then it may 
correspond to either a cata- or a pericondensed polyhex. 

(3) In the general case, one cannot decide from the BG whether the parent poly- 
hex is cata- or pericondensed. 

An example of a catacondensed and a pericondensed polyhex, both having the same BG. 
(Here and throughout this paper the branching graph is indicated by heavy lines.) 

Sometimes this property (whether the polyhex is cata- or pericondensed) will 
depend on how it is embedded in the hexagonal lattice. 

A catacondensed and a pericondensed polyhex, both having the same BG; the two BGs are, 
however, embedded differently in the hexagonal lattice. 

(4) The presence of the (branched) isopropyl subgraph in the branching graph 
is a necessary but not a sufficient condition for the polyhex to be pericondensed. 
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(a) This BG is (b) This BG has an (c) This BG contains 
the isopropyl embedded isopropyl the isopropyl subgraph, 

graph, subgraph, yet the polyhex is 
catacondensed. 

(5) If the graph G is the BG of  a catacondensed polyhex, then G may have one 
or more components, and each component is constructed from the X-, Y- or Z-type 
blocks shown below. A component can be a single X-, Y- or Z-block, or it can be 
Y- and/or Z-blocks linked by, or just connected to, X-units. Only the vertices 
shown in solid black can be used for connections. In the case of an Xp-link or 
Xp-branch (p >~ 1), the condition ki -  i + ki > 0 must hold for all i = 1 , 2 , . . . ,  p. 

2ko 

/ A \ 

x o =  xo(ko); ko>~O 

2ko 2kl 2k2 2kp 

xp = xp(ko,kl . . . . .  kp); p~>l, ko,kl,...kp>>.O 

"X-block" components of a catacondensed polyhex. 

~ O O m ~ D 

Y =  Y(p); p>~l 

A"  Y-block" component of  the BG of a 
catacondensed polyhex. 

A "Z-block" component of the 
BG of a catacondensed polyhex. 
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(6) Whether a graph with the structure described in point 5 is the BG ofa  catacon- 
densed polyhex may depend on the mode of its embedding in the hexagonal 
lattice. 

BG of a (unique) BG of a (unique) 
catacondensed pericondensed 

polyhex, polyhex. 

This mixed "axial/equatorial" 
arrangement is not the BG of 

any polyhex. 

(7) A graph G having the structure described in point 5 is the BG of a catacon- 
densed polyhex C if it can be embedded in a hexagon lattice so that each hexagon of 
the lattice has any one of six combinations of branching graph edges belonging 
also to C. This is illustrated below with hatched hexagons (broken edges denote 
hexagons external to C). Taken with the requirements of point 5, these constitute 
conditions for G to be the branching graph of C. 

(a) No edges: present 
only as an external 

hexagon. 

(b) One edge: the 
polyhex contains 

this hexagon. 

(c) Two incident edges: the 
hexagon must be external 

to the polyhex. 

(d) Two opposite edges: 
contained within the 

polyhex. 

(e) Three incident edges: this hexagon 
may be internal or external with 

respect to the polyhex. 

(0 All six edges: this hexagon 
must be contained with 

the polyhex. 

On the face of it there appear to be other possibilities; two staggered edges, and 
four and five incident edges. It can easily be verified however, that is not possible to 
construct a catacondensed polyhex that generates a hexagon with four incident 
BG edges. The others (two staggered and five incident edges) are precluded from 
appearing internally in a branching graph by definition, and, if external, the poly- 
hex cannot be constructed. 



364 E. C. Kirby, L Gutman / Branching graphs of polyhexes 

(8) It is conjectured that the conditions outlined in points 5 and 7 are not only 
necessary, but also sufficient for an (embedded) graph G to be the BG ofa catacon- 
densed polyhex. 

(9) If a BG of a catacondensed polyhex has no cycles then the respective polyhex 
is unbranched. 

Proof 

Any branched catacondensed polyhex contains as a subgraph at least one triphe- 
nylene fragment whose BG is the 6-cycle. 

Note that acyclic BGs may correspond also to pericondensed polyhexes: 

A pericondensed polyhex (zethrene) whose BG is acyclic. 

(10) If the BG is not connected then it may correspond to several polyhexes. 
This example shows four catacondensed polyhexes having the same (disconnected) 
branching graph: 

( 

d 
J 
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(11) The number of components of a BG is increased by one for each L2 mode 
hexagon present in the parent polyhex. 

An L2 mode hexagon (one with two opposite degree-2 vertices). 

(12) The 6-cycle is the only simple cycle (i.e. one whose vertices are all of 
degree 2) that is the branching graph of a polyhex. Other cycles can, however, be 
branching graphs of singly connected polyhex systems. The branching graph of a 
circulene for example is either branched or it is disconnected. 

A cycle that is the BG of a singly connected polyhex system. 

(13) In a k-defect matching of the BG ofa polyhex, k is always even. 

Proof  

Each edge in a k-defect matching covers two vertices of the BG. Because the 
BG of a polyhex necessarily has an even number of vertices [22,26] it follows that 
the number of uncovered vertices (= k) must also be even. 

(14) In a k-defect matching of the BG ofa catacondensed polyhex, k = 0. 

Proof  

The existence of a perfect matching (k = 0) in the BG of a catacondensed poly- 
hex follows from either 1 or 5. 

(15) The number of vertices in a branching graph represents an upper bound of 
the number of degree-3 vertices in any spanning tree of its associated polyhex. 
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Proof  

By definition every vertex of the branching graph appears in the spanning tree, 
and these are only vertices that can be, but need not be, of degree 3 there. 

(16) If a branching graph has no k-defect matchings with k </d then its polyhex 
has no spanning trees with fewer than (/d/2 - 1) branches. This represents a lower 
bound (cf. 15). 

Proof  

Consider the spanning subgraph G obtained from polyhex P by deletion of the 
edge set of a/d-defect matching of its branching graph. G has/d vertices of degree 3, 
and all other vertices are of degree 2. G can be regarded as the homeomorphic 
graph G ~, having k' vertices of degree 3 and v2p edges, where v2p represents the num- 
ber of paths joining pairs of degree-3 vertices through a sequence of one or more 
degree-2 vertices. It can easily be seen that: 

if/d = 0 then V2p = 1 (i.e. G is a cycle) and G ~ = 

i f / d - - - 2 t h e n v 2 p = 3 a n d G / =  ( ~  orG ~= O<3 
If this graph is converted successively into graphs that have more vertices of 

degree 3, then every subsequent addition of a pair of degree-3 vertices increases the 
number of edges by 3. (Each vertex divides an edge into two, and the pair also con- 
tributes the edge joining them) i.e. v2p = 3/d/2 (for/d > 0,/d even). 

Any tree wi th /d  vertices has /d  - 1 edges, therefore G / has 3 k ' / 2 -  (/d - 1) 
= / d / 2  + 1 more edges than a spanning tree with/d vertices. G can be converted to a 
spanning tree by deleting edges in such a manner as to eliminate cycles without 
causing disconnection. To select a minimally branched spanning tree, the edges 
chosen are adjacent to degree-3 vertices wherever possible. The equivalent proce- 
dure in graph G' is not deletion, but cutting, of edges adjacent to degree-3 vertices. 

No more than/d/2 + 1 edges in G r may be cut without disconnection, and it fol- 
lows that the minimum number of degree-3 vertices in a spanning tree of G t, G and 
e is/d - (/d/2 + 1) = / d / 2  - 1. (/d > 0, and/d even.) 

Note: this result expresses in a more general form the procedure suggested[l] 
for diagnosing whether a polyhex is or is not traceable (path-Hamiltonian). 

(17) Some graphs can be branching graphs, but cannot be branching graph com- 
ponents. 

Examples are the 3-star, and the branching graph of perylene (cf. point 4). 
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They can be characterised as branching graphs of polyhexes that have no edge 
that is more than one edge distant from some vertex of their branching graph. 

(18) A graph having vertices of degree one may be the BG of several polyhexes. 
Such a graph, embedded in the hexagonal lattice, is the BG of at most one poly- 
hex. 

POLYHEX BRANCHING GRAPHS THAT ARE POLYHEXES 

(19) If P is a sextet 2-factorable polyhex, then each component of its branching 
graph is either a polyhex or is composed of several disjoint polyhex units where 
each edge connecting these units corresponds to an essentially single bond. For a 
proof see Gutman and Kirby [22]. 

(20) A polyhex can be the branching graph of not more than two distinct parent 
polyhexes (cf. 18). For a proof see Gutman and Kirby [22]. 

(21) For the case where the branching graph is a polyhex, there is one and only 
one infinite series of polyhexes PI,/2, P3,. • • such that each polyhex is the branch- 
ing graph of the next member of the series, i.e. Pi = BG(Pi+I ). This is the triangular 
sequence starting from the 6-cycle: 

(3 
PI = BG(P2) P2 = BG(P3) 

/'3 = BG(P4) /'4 = BG(Ps) 
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The proof of this is very lengthy and cumbersome. The idea, however, is simple: 
the triangular series P1, P2, P3,... contains the only possible cove- and fjord-free 
polyhexes whose vertices of degree 2 belong only to L1- and L3-mode hexagons 
defined in accordance with the illustrations below (see also ref. [19]). 

~ S  cove 
Oord 

Fjords, coves and hexagon modes. 

Now, the presence of a fjord makes it impossible to continue the construction. 
The presence of a cove will cause the occurrence of a fjord in one of the next genera- 
tions. Similarly, the presence of hexagons of modes Pa and P3 will result in a fjord 
in one of the subsequent generations. 

An example of a geometrically non-planar series with the property 
Pi = BG(Pi+I) is a set of graphitic cylinders of constant diameter but increasing 
depth. Any cubic graph, such as an infinite hexagonal lattice, or a finite but closed 
one, e.g. a hexagon lattice covering a toroidal surface, has the property of being 
its own branching graph [27]. 

(22) Polyhex branching graphs that are polyhexes exist with k-defect matchings 
for any even value ofk. 

(" 

k = 0  k = 2  k = 4  
A branching graph series where the best possible matchings have increasing defect (see ref. [28]). 
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POLYHEX B R A N C H I N G  GRAPHS THAT ARE TREES 

(23) We would like to know how to recognise trees that can be polyhex branch- 
ing graphs, and polyhexes that have tree branching graphs, but have only partially 
solved this problem. In general it seems more difficult to characterise branching 
graphs that are trees than branching graphs that are polyhexes, and this is because 
(in contrast to polyhexes with no substituents) they can be embedded in the 
hexagonal lattice in different ways, as is known in connection with the lattice tree 
problem [29,30]. 

(24) The characterisation of trees which are BGs of catacondensed polyhexes 
was achieved in point 5, those trees of the type X0 and Xp. The respective catacon- 
densed polyhexes are unbranched and contain no L2-mode hexagon (cf. 9 and 11). 
There is a one-to-one correspondence between a BG of type X0 or Xp and an 
unbranched catacondensed polyhex. In other words the way in which the BG has to 
be embedded in the hexagonal lattice is unique. 

(25) The n-vertex branching graph that is a single chain is associated with the 
zig-zag polyhex with n/2+ 1 hexagons. (This is the same polyhex as 
Y(p),p = n/2 + 1 in point 5. The value ofn is, of course, even.) 

(26) The n-vertex branching graph that consists of n/2 disjoint edges is asso- 
ciated with the linear polyacene with n/2 + 1 hexagons. 

(27) A complete characterisation of the trees which are BGs of pericondensed 
polyhexes is not known. That such trees exist is shown in point 9. 

(28) It would be interesting to determine the number of distinct polyhexes that 
have the same tree BG. In other words: how many embeddings of 3-trees (and 
which) are polyhex BGs? For branching graphs with up to ten vertices, the maxi- 
mum number is three [30]. 

.: (29) For the purpose of reconstructing a polyhex from a tree branching graph 
embedded in a hexagon lattice, two limiting conditions may be stated: 

(29a) There are just three possible ways of adding a hexagon to a pair of 
degree-2 vertices. 

(29b) There are just twenty-three possible ways of adding a pair of hexagons to 
a terminal edge. 

When one hexagon is added to a pair of vertices of degree 1 /degree 1 or degree 
1/degree 2, then all four addition modes are possible, giving eight in total for one 
side of a degree-1 vertex. The addition of a pair of hexagons to a terminal edge 
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s h o u l d  thus  be  poss ib le  in th i r ty - s ix  d i f fe ren t  w a y s  ( the n u m b e r  o f  pa i r s  - wh ich  

c a n  be  two  o f  the  s a m e  - t h a t  can  be chosen  f r o m  eight  i tems)  but ,  in p r ac t i c e  on ly  

t w e n t y - t h r e e  o f  these  a re  ava i lab le .  

The failure of 1-contact addition (it is not possible to complete a polyhex from these drawings). 
Note that this mode is possible if the BG is not a tree. 

2-contact addition 

3-contact addition 

4-contact addition 

Reconstruction of a polyhex from a branching graph that is a tree: addition of a hexagon to a pair of 
degree-2 vertices. In principle there are four possible modes of adding hexagons, namely 1-, 2-, 3- or 
4-contact addition. 1-contact addition to a pair of degree-2 vertices fails, but examples of the other 

three addition modes can be drawn, and are shown here by hatched hexagons. 
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2 4 

Reconstruction of a polyhex from a branching graph that is a tree: the addition of a hexagon to a 
pair of vertices of degree 1/degree 1 or degree 1/degree 2. 

1-1 2-2 

2-6  
2-7  

2-3 

2-11 

2 -4  

3 - 3  

3-7  

Reconstruction of  a polyhex from a branching graph that is a tree: the addition of  a pair of hexagons 
to a terminal edge. (The numbers refer to the addition mode of  each hexagon (see previous 

diagram.) (Continued on next page.) 
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4-4 4-5  
3-8  

4-7 4-8 

5-7 5-8 
6-8  

7-7 7-8 8-8 

(continued) 

THE RELATIONSHIP OF POLYHEX BGS TO THE DIAS "EXCISED INTERNAL 
STRUCTURE" 

(30) The set of  edges in the branching graph contains the same set of  "internal 
edges" which Dias has used to generate an invariant (ds) by counting the number  of  
"tree disconnections". This was used in his periodic classification of benzenoids 
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[31]. The set of edges in the branching graph, however, includes any that connect 
two vertices of degree 3, and is not restricted to those that are internal. 

(31) Ifa branching graph has no degree-2 vertices then, when stripped of its term- 
inal edges, it becomes the Dias "excised internal structure" of its polyhex, e.g. 
refs. [26,32,33]. 

Note that the absence of degree-2 vertices in the branching graph appears to be 
a sufficient but not a necessary condition for its polyhex to be what Dias calls 
"strictly pericondensed", and that the presence of degree-2 vertices is associated 
with the presence of bay regions in such structures [34]. 
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